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ABSTRACT 

 

Meteorological forcing data are necessary to drive many of the spatial models used to 

simulate atmospheric, biological, and hydrological processes.  Unfortunately, many areas lack 

sufficient meteorological data and available point observations are not always suitable or reliable 

for landscape or regional applications.  NOAA’s local analysis prediction system, LAPS, is a 

meteorological assimilation tool that employs available observations (meteorological networks, 

radar, satellite, soundings, and aircraft) to generate a spatially distributed, three-dimensional, 

representation of atmospheric features and processes.  As with any diagnostic representation, it is 

important to ascertain how LAPS outputs deviate from a variety of independent observations at 

different spatial and temporal scales.  Fortunately, a number of observations exist that are not 

used in the LAPS system, and they were employed to assess LAPS performance during two 

consecutive years (1 September 2001-31 August 2003).  LAPS assimilations were remarkably 

accurate in depicting temperature and relative humidity values temporally and spatially.  The 

ability of LAPS to represent wind speed was satisfactory overall, but accuracy declined with 

increasing elevation.  Lastly, precipitation estimates performed by LAPS were irregular and 

reflected inherent difficulties in measuring precipitation. 
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1. Introduction 

Meteorological forcing data are necessary to drive many of the spatial models used to 

simulate atmospheric (Liston et al. 1998; Westrick et al. 2002), ecosystem (Parton et al. 1998; 

Running et al. 1988; Scuderi et al. 1993), and hydrological processes (Jasper et al. 2002; Liston 

et al. 2002).  Unfortunately, many areas (e.g., high elevation mountains, intermountain 

shrublands, deserts) lack meteorological data.  Furthermore, available point observations are not 

always suitable for landscape or regional applications (Pielke et al. 2002), especially in forested 

and mountainous regions. 

The National Oceanic and Atmospheric Administration’s local analysis prediction system 

(LAPS, http://laps.fsl.noaa.gov/) is a meteorological data assimilation tool that employs a suite of 

observations (meteorological networks, radar, satellite, soundings, and aircraft) to generate a 

realistic, spatially distributed, time-evolving, three-dimensional representation of atmospheric 

features and processes (Albers et al. 1996).  Data produced by LAPS include wind speed, wind 

direction, surface temperature, relative humidity, surface pressure, precipitation, and cloud cover.  

Because LAPS is a spatially distributed representation of meteorological observations, it 

provides important opportunities for users who require local (10  or finer horizontal grid 

increment) meteorological data to drive distributed land surface and ecosystem models over large 

regions.  The intention of LAPS is not only to provide an up-to-date atmospheric state 

representation for nowcasting and assessment, but it can also serve as a mechanism to initialize 

local-scale mesoscale weather forecast models. 

As with any diagnostic representation, it is important to ascertain how LAPS outputs 

deviate from a variety of observations at different spatial and temporal scales.  Since many 

readily available observations (e.g., National Weather Service, various state-level departments of 

transportation, FAA weather) are integrated into LAPS, they cannot be used to assess diagnostic 
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performance.  Fortunately, a number of observations are not used in LAPS.  Our objective was to 

employ independent meteorological data sources to examine relationships among LAPS 

assimilations and observed data with respect to meteorological variables commonly used as 

terrestrial model drivers: temperature, relative humidity, wind speed, and precipitation. 

a. Study area 

 The 1,312,500 km2 LAPS domain encompasses the states of Colorado, Wyoming, and 

portions of South Dakota, Nebraska, Kansas, Oklahoma, New Mexico, Arizona, Utah, Idaho, and 

Montana of the United States (Fig. 1).  The weather, topography, and land cover of the domain 

are typical of the Great Plains (Sims et al. 2000) and Rocky Mountain (Peet 2000) regions.  The 

weather is continental and dry with relatively high summer and cold winter temperatures.  The 

landforms shift from the eastern edge of the flat and rolling plains and tablelands to the dissected 

western canyons and high peaks of the Rocky Mountain Cordillera.  As a reflection of the 

interaction between atmosphere and land surface, the land cover changes from agricultural 

cropland, pastures, and grasslands in the east to mountain forests and shrubland basins in the 

west. 

 

2. Methods 

Validation of LAPS assimilations required hourly LAPS data, independent 

meteorological observations, meteorological-station site characteristics, and statistical analyses.  

LAPS validations were performed for assimilations spanning 1 September 2001-31 August 2003 

over the domain of interest (Fig. 1). 
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a. LAPS assimilations 

The Local Analysis and Prediction System (Albers 1995; Albers et al. 1996; Birkenheuer 

1999; Mcginley et al. 1991), developed and operated by the NOAA's Forecast Systems 

Laboratory (FSL) in Boulder, Colorado, combines a wide array of observed meteorological 

datasets into a unified atmospheric analysis with a time interval of an hour or less.  An analysis 

contains both spatially and temporally continuous atmospheric state variables in addition to 

special atmospheric and land-based fields over Colorado, Wyoming, and portions of the 

surrounding states (Fig. 1). The quasi-operational analyses data used in the study described 

herein, employs a 10-km horizontal grid (125 x 105) with 21 isobaric vertical levels and hourly 

temporal resolution (Liston et al. 2004b). 

LAPS starts with a first guess or background field interpolated to a finer grid from 

coarser large-scale forecast model output (e.g., Rapid Update Cycle forecasts; Benjamin et al. 

2004a; Benjamin et al. 2004b).  The LAPS is a series of routines that merges observations with 

other nationally disseminated data and modifies the atmospheric analysis to match available 

observations.  Different analysis methods are currently used in the routines consisting of 

Kalman, traditional Barnes, and variational minimization techniques, depending on the dataset 

(e.g., Daley 1991). 

LAPS employs a wide range of observational datasets as part of its diagnoses, including 

1) surface observations at specific sites every 5 minutes, 2) hourly surface aviation observations, 

3) Doppler radar volume scans every 6 minutes, 4) wind and temperature Radio Acoustic 

Sounding System (RASS) profiles from the NOAA Demonstration Profiler Network every 60 

minutes, 5) satellite visible data every 15-30 minutes, 6) multi-spectral image and sounding 

radiance data every 60 minutes, 7) Global Positioning System (GPS) total precipitable water 
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vapor determined from signal delay, and 8) automated aircraft observations.  Further, quality 

control measures were used to assess the observations and reject those deemed unsuitable. 

LAPS topography and land surface is based on USGS land use data that provides 24 land 

application and vegetation-type categories along with the basis for discerning water/land fraction 

in the domain.  Soil type is derived from United Nations FAO/STATSGO data with a horizontal 

resolution of 30 seconds that classifies 16 soil categories including texture within two layers.  

The top layer extends to 30 cm below the surface and the second layer extends from that point to 

90 cm under the surface. 

Preparation for the comparison involved extracting LAPS data from the LAPS grid point 

nearest the independent meteorological stations.  Additional processing was not employed for the 

hourly comparisons, but for daily comparisons, LAPS data were aggregated to daily maximums, 

minimums, and average values. 

 

b. Independent meteorological observations 

Validation of the LAPS diagnoses required comparison with meteorological data not used 

in the LAPS analyses.  Such datasets are routinely collected by educational and agricultural 

observational networks and field experiment campaigns.  Independent data sources utilized for 

validation included a total of 107 stations from the Cold Land Processes Experiment (CLPX, 

Cline et al. 2002), Colorado Agricultural Meteorological network (COAGMET, 

http://ccc.atmos.colostate.edu/~coagmet/), the GLOBE Program (http://www.globe.gov/), and 

the High Plains Regional Climate Center’s Automatic Weather Data Network (AWDN, 

http://www.hprcc.unl.edu/awdn/). 
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Validation sources possessed a range of observed variables and temporal resolutions.  All 

stations monitored air temperature, relative humidity, and precipitation.  With the exception of 

GLOBE data, all stations also collected wind speed.  Observations ranged in frequency from 10 

minutes (CLPX) to daily (GLOBE); the remaining sources performed hourly measurements.  

Since CLPX data were observed at a finer resolution than LAPS assimilations, they were 

aggregated to hourly observations.  Comparisons using GLOBE data involved aggregating LAPS 

data to a daily time-step.  After the data were collected, they were quality checked (Liston et al. 

2004a) and prepared for comparisons with the LAPS diagnoses. 

 

c. Station site characteristics 

1) Land cover 

 Spatial data were also necessary to perform the LAPS validation with respect to variation 

in land cover and elevation within the domain (Fig. 1).  Land surface characteristics have been 

shown to influence local weather characteristics and diurnal fluctuations (Pielke et al. 2000; 

Pielke et al. 2003).  We also desired to identify and assess the potential influence of land cover 

on the errors associated with LAPS assimilations and observed data. 

 A 30 m resolution National Land Cover Dataset (NLCD, Vogelmann et al. 2001) was 

obtained from the USGS Seamless Data Distribution System for the entire LAPS domain (Fig. 

1).  Because we wanted to accurately represent the predominant land-cover type associated with 

each station, the 30 m resolution NLCD was resampled to 1 km, station coordinates were 

intersected with the 1 km NLCD data in a geographic information system (GIS), and each 

independent observation site was attributed with a predominant land-cover class. 
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2) Elevation 

Because the LAPS assimilations were performed at 10 km horizontal grid increments, 

observed differences in LAPS diagnoses and observations were considered together with the 

topographical representation LAPS employed versus the actual elevation of the meteorological 

source.  Thus, station locations were intersected with the LAPS elevation to calculate the 

difference between LAPS and actual elevations. 

 

d. Statistical analyses 

 The LAPS validation process occurred in two principal steps.  In the first step, LAPS data 

were compared directly with observations using simple linear regressions without 

transformations.  The direct comparisons included air temperature, relative humidity, wind 

speed, and precipitation. 

The second step entailed the assessment of errors identified in the first step with respect 

to surface cover and elevation characteristics of the observation locations.  To evaluate the role 

of land cover, one-way analysis of variance (ANOVA) was performed using the temperature, 

relative humidity, wind speed, and precipitation estimates of variance (r2) as the response and 

land-cover class as the factor (Minitab 2000).  Tukey’s one-way multiple comparisons (family 

rate = 0.05) were employed to assess differences in r2 among the cover types.  Elevation values 

(observation elevation and LAPS elevation minus observation elevation) were compared against 

the temperature, relative humidity, wind speed, and precipitation r2 values using simple linear 

regressions. 
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3. Results and discussion 

 Simple linear regressions of LAPS assimilations versus observations of temperature, 

relative humidity, wind speed, and precipitation illustrated the abilities of LAPS to represent the 

four examined meteorological characters (Fig. 2).  The linear regressions performed on two years 

of temperature and relative humidity data from 107 and 99 stations, respectively, indicated that 

much of the variation in observed data is duplicated in the LAPS assimilations.  The mean r2 

values associated with the temperature and relative humidity analyses are 0.96 and 0.82, 

respectively.  The variation represented by most equations with respect to LAPS and observed 

wind speeds (99 stations) was intermediate overall; the mean regression r2 value was 0.50.  

Lastly, the average of 96 station r2 values for precipitation was the poorest among the compared 

meteorological variables (0.32). 

 In addition to having the highest average r2 value, the range of temperature r2 values was 

also relatively small (Fig. 2) compared with the other meteorological variables.  In most cases, r2 

values of the temperature comparisons were similar among the examined stations.  In contrast, 

wind-speed and precipitation r2 values possessed larger ranges of r2 values, indicating a 

substantial variation in agreement among the stations.  Wind-speed r2 values were particularly 

variable, since agreements ranged from 0.01 to 0.85. 

 

a. Sidney, Nebraska, Case Study 

 While many linear regressions provided a rigorous test of how well the LAPS 

assimilations represented the examined meteorological conditions among a number of distinct 

locations, more investigation into the comparisons at specific locations is required.  However, 

presenting 107 sets of statistics on linear regressions performed on hourly data over a period of 2 
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years is not practical.  Instead, a station located in the high-plains grassland of western Nebraska 

and operated by the High Plains Regional Climate Center (2003) was randomly selected to more 

thoroughly assess LAPS assimilations against observations with respect to diurnal and seasonal 

cycles.  Comparing the observations with LAPS diagnoses on an hourly timescale is easily done 

by coincidently plotting the values and examining the individual linear regression plots for the 

stations. 

 

1) Temperature 

 Temperature values were nearly identical in the LAPS assimilations compared with the 

independent observations associated with the Sidney, Nebraska, site (Fig. 3).  In the plots, no 

temporal lags exist and differences between the two plots are barely discernable during the three 

examined months.  As expected, afternoon temperatures were highest while nighttime and 

morning temperatures were lower.  Fall, winter, and spring (Figs 3a-c) diurnal patterns and 

extremes in temperature are represented in both records; few LAPS data points deviate from the 

observed record.  There are only a handful of LAPS temperature data points that stray from the 

lower bounds of observed temperatures in the fall (e.g., 22 Sept. 2002; Fig. 3a) and winter (e.g., 

16-17 Jan. 2003; Fig. 3b) profiles. 

The simple linear regression performed on the LAPS and observed records (Fig. 3d) 

indicated that agreement was high (r2 = 0.98) and the slope of the equation approximated a 1:1 

relationship.  Furthermore, the cloud of compared points shows a small level of variation around 

the 1:1 regression line and a y-intercept close to 0, indicating that there were no clear errors with 

respect to temperature and few differences between LAPS and observed data. 
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 The Sidney, Nebraska, temperature comparison possessed a slightly higher than average 

r2 value (0.95) compared with the other 106 analyses performed.  The Sidney, Nebraska, analysis 

was typical of most temperature analyses performed during the course of this validation project: 

LAPS assimilations were remarkably accurate in depicting hourly, daily, and seasonal 

temperatures.  In almost all of the comparisons, LAPS and observation temperature values were 

closely matched. 

 Why was air temperature so well represented in LAPS?  Air temperature is a continuous 

variable that varies relatively smoothly through time and space, and these changes tend to be 

moderate and predictable based on characteristics of atmospheric dynamics, elevation (Pielke et 

al. 1977) and land surface characteristics (vegetation, soil moisture, etc.; Marshall et al. 2004a; 

Marshall et al. 2004b).  The LAPS assimilations and algorithms employed to capture the 

dynamics of air temperature (Kalman system) appear to be successful within the validation 

domain (Fig. 1). 

 

2) Relative Humidity 

 Relative humidity values produced by LAPS were closely matched with concurrent 

observations (Fig. 4).  As was the case with the temperature comparisons, temporal lags between 

the datasets are not apparent.  September 2002, January 2003, and May 2003 (Figs. 4a-c) 

comparisons exhibited diurnal trends where afternoon humidity values were low while nighttime 

humidity levels were high.  LAPS and observational data closely match overall.  However, 

during instances of higher observed relative humidity values, similarities among the two datasets 

fade (Figs. 4a-c).  It should be noted that some of this behavior may be attributed to increased 

sensor error at higher relative humidity values. 
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The simple linear regression for the Sidney station revealed the relationship between 

LAPS and observed data.  The proportion of variability in the LAPS data accounted for by the 

observations was 92%, slope was 0.90, the y-intercept was 8.6, and moderate scatter of data 

points existed along the regression line (Fig. 4d).  Like the temperature comparison, the relative 

humidity validation indicated that much of the variance between LAPS and observed data was 

explained in the linear model (r2 = 0.92).  The lower slope and a y-intercept > 0 in the equation 

indicated that at higher observed relative humidity values, LAPS data have a slightly lower 

relative humidity than the observed value.  In contrast, at lower observed humidity levels, LAPS 

relative humidity values are slightly higher than the observed data.  Lastly, the scatter of points 

around the regression line indicated that LAPS and observed data agreement was more probable 

at lower relative humidity values, and there is a higher chance of mismatch at higher relative 

humidity values. 

The Sidney comparison r2 value (0.92) is somewhat higher than the average r2 value 

(0.82) associated with the remaining 98 comparisons of relative humidity.  However, the general 

trends identified with slope, y-intercepts, and scatter were common to the vast majority of the 

other comparisons.  In general, LAPS and observed data were closely matched with respect to 

relative humidity values. 

Relative humidity, in contrast to temperature, is less spatially continuous and changes 

dramatically at distances < 30 km (Camargo et al. 1999; Hubbard 1994).  Despite, this variability 

in relative humidity, the relationships between LAPS and observations were strong.  Moreover, it 

is likely that this high level of agreement is related to the successful representation of 

temperature. 
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3) Wind Speed 

 LAPS and observed wind speed values are more divergent than demonstrated with 

temperature and relative humidity comparisons (Fig. 5).  General trends in observed wind speed 

are characterized in LAPS data, and no obvious temporal mismatches are present (Figs. 5a-c).  

Overall, the LAPS data are more extreme than the observations during the examined months 

(Figs. 5a-c). 

 The simple linear regression performed on the Sidney LAPS and observation comparison 

revealed an intermediate variance agreement, a slope >1, a y-intercept close to 1, and variable 

scatter along the regression line (Fig. 5d).  The r2 value for the wind-speed regression indicated 

that 71 percent of the variation in the LAPS assimilation exists in the observed data.  The slope 

value of 1.07 revealed that LAPS slightly overestimates wind speeds in this location compared 

with observations.  The y-intercept of 0.06 shows that LAPS also barely overestimates wind 

speeds at low observed wind speeds.  Scatter around the regression line is relatively uniform up 

to 10 m s-1; it tapers at speeds above that due to the lower frequency of higher wind speeds in this 

location. 

 The Sidney wind-speed comparison focused on a case that was close to the 90th percentile 

of all cases (Fig. 2) in terms of its r2 value.  More importantly, the wind-speed comparisons were 

the most variable with respect to the relationship between LAPS and observed data; the average 

r2 for the remaining 98 wind speed comparisons was a substantially lower 0.50 (Fig. 2).  The 

other examined cases also possessed inconsistent slopes (ranging from 0.27 to 1.26) and 

y-intercepts (from 0.25-3.0). 

 The erratic relationship between LAPS and the observed wind-speed data is indicative of 

the spatial variability associated with wind speed (Arya 2001; Hubbard 1994).  While winds are 

 13



relatively consistent above the well-mixed daytime boundary layer, they interact with the surface 

and surface features (e.g., topography and vegetation) to produce spatially variable wind speeds.  

The potential influence of surface features on the relationship between LAPS and observed wind 

speeds are explored below (see Station Site Characteristics). 

 

4) Precipitation 

 The precipitation comparison showed the highest level of disagreement among the four 

compared meteorological variables (Fig. 6).  In most cases, the LAPS data showed evidence of 

precipitation where none was observed during the same period (Figs. 6a-c).  When precipitation 

was observed, there usually was precipitation in the concurrent LAPS data.  It should be noted 

that the entire January dataset (Fig. 6b; High Plains Regional Climate Center 2003) in the Sidney 

observations were flagged because they lacked confidence in the precipitation estimate.  In fact, 

no precipitation was recorded at Sidney during the month of January, indicating that their lack of 

confidence was probably well-founded. 

 The simple linear regression equation for the Sidney LAPS and observed precipitation 

comparison revealed the explained variation, slope, y-intercept, and scatter along the regression 

line (Fig. 6d).  The r2 value from the regression indicated that 24% of the variance between the 

two datasets was explained by the equation.  The slope was greater than 1 and the y-intercept 

was slightly greater than 0, indicating that LAPS assimilations generally overstated precipitation, 

especially at higher observed precipitation levels.  There is abundant scatter along the regression 

line at lower observed (< 5 mm hour-1) precipitation levels (Fig. 6d). 

 The disparity between LAPS and observed precipitation is likely a function of 

observational error, LAPS calculation of precipitation from radar and satellite data, and scaling 
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differences.  Precipitation measurements are some of the more difficult meteorological 

measurements to make accurately (Ahrens 2003; Shih 1982), especially when snow is 

accompanied by wind (Yang et al. 1998), which is a common winter occurrence in the LAPS 

domain (Fig. 1).  LAPS also calculates precipitation with the aid of radar and satellite 

observations that can over/underestimate precipitation (Brandes et al. 1999; Klazura et al. 1999; 

Legates 2000).  Lastly, it is important to remember that the LAPS system studied here operates 

on a scale of 10 horizontal kilometers while the compared observations are point measurements 

located within that 10 km.  Precipitation amounts within that 10 by 10 km area may not be 

reflected by a point within that area, especially when precipitation is convective in origin (Pielke 

2001). 

 

b. Station site characteristics 

1) Land Cover 

 Two site characteristics were assessed with respect to the r2 values produced by the 

simple linear regressions: land cover and elevation.  The 107 stations used for validation of 

LAPS assimilations were located in 13 different 1-km-aggregated National Land Cover classes 

(with quantity in parentheses): water (1), residential (2), urban (4), bare (1), deciduous forest (1), 

evergreen forest (2), shrubland (6), urban grassland (1), grassland (37), pasture/hay (15), small 

grain (14), row cropland (22), and alpine (1).  According to the unbalanced one-way ANOVAs, 

r2 values were significantly different among the land-cover classes for temperature, relative 

humidity, and wind-speed comparisons (Fig. 7, Table 1).  The r2 values among precipitation 

comparisons and cover classes were not significantly different. 
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How were the land cover types different with respect to accuracies among LAPS and 

observed data?  Mean r2 values of the temperature comparisons were all high with the exception 

of the residential cover class, which was identified as significantly lower (0.05 family error in a 

Tukey pairwise comparison) than the pasture/hay, grassland, row crop, small grain, and 

shrubland classes (Fig. 7a).  While the relative humidity r2 values were significantly different in 

the ANOVA (Table 1), Tukey pairwise comparisons using 0.05 and 0.10 family error rates failed 

to identify classes different from each other (Fig. 7b).  With regard to wind speeds (Fig. 7c), 

evergreen r2 values were significantly lower (0.05 family error) than grassland, small grains, row 

cropland, and urban classes.  In addition, shrubland wind speed r2 values were significantly 

lower than those associated with row crops. 

It is important to note the disparity among land-cover class memberships that were used 

to delineate these differences among land-cover types and LAPS-observation discrepancies.  

Stations associated with water, residential, urban, bare, deciduous forest, evergreen forest, urban 

grassland, and alpine classes possessed less than 3 members; results related to these classes 

should be treated with appropriate skepticism and caution.  It is not a matter of being attributed a 

false significance with respect to the r2 differences; the Tukey test at a 0.05 family error rate is a 

conservative test (Neter et al. 1996).  Rather, the error lies with classes that have a low sample 

size where stations having a high leverage were used to calculate the mean.  For example, the r2 

values associated with the temperature comparisons of the residential class were 0.97 and 0.64 

(Fig. 7a).  The one station with the poorer 0.64 value made the residential class significantly 

different from the pasture/hay, grassland, row crop, small grain, and shrubland classes. 

With the lack of replications in mind, the most concrete land cover and accuracy 

relationship is associated with shrubland r2 being lower than row crop r2 values for the wind-
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speed comparisons.  Reasons for the disparity may be associated with weather differences among 

the land cover types or some other combination of potential characteristics (e.g., surface 

roughness). 

 

2) Elevation 

No discernable relationships existed for elevation and r2 values associated with 

temperature, relative humidity, and precipitation (data not shown).  However, station elevation 

possessed a significant linear relationship with r2 values produced by the wind-speed 

comparisons (Fig. 8).  As the elevation of the observation location increased, the r2 values 

exhibited a marked decrease (r2 = 0.61; p <0.0001).  This 61% explanation in variance due to 

elevation indicates that topography, forest cover, or some combination of these factors 

contributes to the higher rate of disparities present between LAPS and observed wind speeds.  

Differences in r2 values due to disparities between the 10 km horizontal grid increment LAPS 

DEM and the observation-station elevation were not significant with any of the four 

meteorological factors evaluated.  Thus, it is reasonable to assume that the topographical 

resolution of LAPS was not the source of any disparities between LAPS data and observations. 

 

4. Conclusions 

 LAPS assimilations were remarkably accurate in depicting temperature and relative 

humidity values temporally and spatially.  Observed diurnal changes in temperature and relative 

humidity were duplicated by LAPS regardless of land-cover type and elevation associated with 

the 107 stations employed in this project.  Spatial variation in temperature and relative humidity 
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was also successfully represented by LAPS.  For example, mountain and grasslands, each with 

their distinctive weather characteristics, were well represented by LAPS. 

 Wind speed and precipitation relationships between LAPS and observed datasets were 

more variable.  Wind speeds were reasonably represented by LAPS assimilations and accuracy 

was much higher for lower elevations.  The main reason for the disparity in precipitation values 

remains unknown but likely involves some combination of LAPS and observational errors and 

scaling issues. 

The LAPS system is a valuable and reliable choice for applications that require high 

temporal resolution and spatially distributed meteorological data.  LAPS is a realistic data 

assimilation system; it extends the capabilities of its users to areas where few meteorological 

data sources exist or where those sources are often unreliable.  Additionally, LAPS 

improvements underway (e.g., smaller horizontal resolution) are likely to extend the capabilities 

of this system and potentially remedy disparities among precipitation estimates and observations. 
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FIGURE CAPTIONS 

 
FIG. 1.  The LAPS domain, portrayed in this MODIS enhanced vegetation index (EVI) image, 

envelops Colorado, Wyoming, and portions of surrounding states.  Data used for 

validation include the Cold Land Processes Experiment (CLPX), Colorado Agricultural 

Meteorological Network (COAGMET), GLOBE, and the High Plains Regional Climate 

Center’s Automatic Weather Data Network (AWDN). 

 

FIG. 2.  The variability in the LAPS assimilations accounted for in the observations is 

represented by the r2 value produced by simple linear regression equations.  The box 

plots display the mean (dashed line); median (solid line); and 10th, 25th, 75th and 90th 

percentiles of the r2 values.  Temperature and relative humidity values possess the highest 

agreement among LAPS diagnoses and observations, while wind speed and precipitation 

agreements are lower and more variable. 

 

FIG. 3.  Sidney, Nebraska LAPS air temperature assimilations are shown compared with 

simultaneous observations during September 2002 (a), January 2003 (b), and May 2003 

(c).  A simple linear regression for all comparisons from 1 Sept. 2001 through 31 Aug. 

2003 are also shown (d). 

 

FIG. 4.  Sidney, Nebraska LAPS relative humidity assimilations are shown compared with 

simultaneous observations during September 2002 (a), January 2003 (b), and May 2003 

(c).  A simple linear regression for all comparisons from 1 Sept. 2001 through 31 Aug. 

2003 are also shown (d). 
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FIG. 5.  Sidney, Nebraska LAPS wind speed assimilations are shown compared with 

simultaneous observations during September 2002 (a), January 2003 (b), and May 2003 

(c).  A simple linear regression for all comparisons from 1 Sept. 2001 through 31 Aug. 

2003 are also shown (d). 

 

FIG. 6.  Sidney, Nebraska LAPS precipitation assimilations are shown compared with 

simultaneous observations during September 2002 (a), January 2003 (b), and May 2003 

(c).  A simple linear regression for all comparisons from 1 Sept. 2001 through 31 Aug. 

2003 are also shown (d). 

 

FIG. 7.  The level of agreement (r2 value) varied significantly (Table 1) with National Land 

Cover Data classes for temperature (a), relative humidity (b), and wind speed (c).  No 

significant relationshsips existed between precipitation agreements and land cover (d).  

The box plots display the median (solid line); and 10th, 25th, 75th and 90th percentiles of 

the r2 values. 

 

FIG. 8.  Wind speed comparison r2 values decrease with elevation.  The decrease with elevation 

may be related to local terrain influence, LAPS wind profile calculations, or some 

combination of these factors. 
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Analysis d.f. Sum of Squares Mean Square F-Statistic p value

Air Temperature
cover class 12 0.07 0.01 2.33 0.01
error 94 0.24 0.00

Relative Humidity
cover class 11 0.30 0.03 2.56 0.01
error 87 0.94 0.01

Wind Speed
cover class 11 1.36 0.12 3.92 0.0001
error 87 2.74 0.03

Precipitation
cover class 9 0.40 0.04 1.11 0.36
error 86 3.47 0.04

TABLE 1.  One-way analysis of variance (ANOVA) 
results for effects of land cover on regression agreement (r2).
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FIG. 1.  The LAPS domain, portrayed in this MODIS enhanced vegetation index (EVI) image, envelops
Colorado, Wyoming, and portions of surrounding states.  Data used for validation include the Cold Land
Processes Experiment (CLPX), Colorado Agricultural Meteorological Network (COAGMET), GLOBE,
and the High Plains Regional Climate Center's Automatic Weather Data Network (AWDN).
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